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In this paper we consider the problem of using exponential sums to approximate
a given complex-valued function f defined on the possibly unbounded domain
£iI in [Rm. We establish the existence of a best approximation from the set of
exponential sums having order at most n and formulate a Weierstrass-type
density theorem. In so doing we extend previously known results which apply
only in the special cases where £iI is bounded or where m = 1.

1. INTRODUCTION

Let 9 be a nonvoid open subset of [Rm and for 1 ~ p ~ 00 let L p(9)
be defined in the usual manner with II lip being the associated norm. Let
Co(9) denote the space of those functions f E C(9) having the property
that given any E > 0 there exists a compact set K C 9 such that I j(t) 1 < E

whenever t E 9\K. A function y E Coo([Rm) will be called an exponential
sum of order n provided that the linear space 2[y] spanned by the functions

[Di' .,. D;)~] y(t), jl ,... , jm = 0, 1, ... , D; = 8/8t;, i = 1, ... , m

has dimension n, cf. [2, p. 143]. Given S C iCm and n = 0, I, ... , we define
Vn(S) to be the set of all exponential sums y of order at most n which can
be expressed in the form

r
y(t) = I Pj(t) exp(Aj . t)

j~l
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where P1(t), ... , Pr(t) are polynomials in the components t] ..... 1111 of t. where
A1 , ... , Al ES, and where Aj . t Ant, A)/,/,", cpo [2. p. 144]. We
also define

U VIlIS).
" I

In this paper we shall establish a Weierstrass-type density theorem by
showing that Vx(S) is a dense subset of L)J(U') if I px and of Co(':/) if
p =- 00 provided that .'?l and S satisfy mild hypotheses. We also establish the
existence of a best i!p,approximation to a given(from the set V,JS) when S
is closed. In so doing we extend corresponding results from [3] which apply
in the special case where 171 I andCf is a semi-infinite interval and results
from [2] which apply when 171 I and .rJ is bounded.

2. THE SPECTRAL SET Of 0'.

Given a nonvoid open set 0' [R1'" and I /) 7..) we define the cor-
responding spectral set U,,(;/") to be the set of those A E C" for which the
exponential sum y(t) exp[A . t] lies in L 1,(0'). For example. for the positive

cone

we find

{t c- [M'" : riO. i I. . 171:

U)I(Y)

U x (9)

{A E CIII : Re I\, O. i

{A E eli' : Re A, 0, i

1, .... 171:

1, .... 171[.

if X.

In general, U,,(Y:) is convex. Indeed when P .- x' the convexity IS immediate.
and when I P 00 we may use Holder's inequality to show that
A1/PI -i A2iP2 E U,/.9) whenever A, ' A2 E' U)I(:/)' PI I. V... I. ~lIld I p,
I/P2' I. Moreover, we also have

and

U,'(£(1 u 2 2 )

U,,(ex;/" --;- t)

Up!!;;") n U)9J

(I Ix) U,,( Cf)

if 0'1' 0"2 [R1'''.

if O..0: [: [[.R'", and t E [;1:".

if 0' [R'" and I /.

II' 9 is bounded we obviously have U ,,( 0') '''. On the other hal1l!. if
U,,(.0t') e" and I p X) then (j must have finite measure in tR"' but
need not be bounded, e.g .. as is the case when m 2 and 9 is the "Gaussian
sta r"
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In view of the following lemma, the interior, UpO(!!J), of the spectral set
will be of importance in the subsequent analysis.

LEMMA 1. Let!» be a nonvoid open subset of IRm and let 1 ~ P ~ 00.

Then V"iUpO(!»)) C L p(!»).

Proof It is sufficient to show that when AE UpO(!») and k 1 , ••• , k m are
nonnegative integers with sum k ~ 0 the exponential sum

yet) = t~l .,. t~m . exp[A . t]

lies in L p (!»). Accordingly, let S > 0 be chosen so small that for each i = 1,... ,
m and a = ± 1 the exponential sum

Yio(t) = exp[A . t + Sati]

lies in Lp{!»). For i = 1,... , m and a = ±1 we define the cone

H io = {t E IRm
: max[1 t1 I,..., I tm I] = ati}·

We let Xio denote the characteristic function of H io so that

Iyet) Xio(t) 1= 1t~l ... t::: . exp[-Sat;] . Yio(t) . Xio(t) I

~ M· IYio(t)l,

where

M = max{Tk . exp[ -ST] : T ~ O} ,= [kj(Se)]k.

Using this pointwise bound we find

II Y lip = IlLY' Xia II
1,0 'P

~ L II Y . Xio lip
i,a

~ M . L II Yio lip < 00
i,a

so that Y E L p (!»). I
We note that it is possible for Up (!») to have no interior points, e.g., as is

the situation when m = 2 and

in which case
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3. EXISTENCE OF GOOD ApPROXIMATIONS

Before presenting a density theorem we tlrst prepare Iwo lemmas.

LEMMA 2. Let IE Co[O,'x..) a/1(1 E

even polynomial p such that
o he giuen. Then there exists some

f( t) p(t)c I ( for 0 (I)

0, then (1) also holdsfi)r some odd polvno/llial p.

Proof Using Pollard's solution of the Bernstel/1 approximation problem
[4, Theorem I, p. 403] (with (f>(t) e f and with the sequence of partial
sums from the Maclaurin series for cosh t) we see that the set of finite Iincar
combinations of the functions

O. 1,.

is dense in Co( IR). This being the case there exists some polynomial q such that

f( t i) for

and it follows that ( I) holds with the even polynomial

/1(1) [q(t) q( t)!:.

A similar construction shows that ( I ) holds for an odd polynomial p provided
flO) O. I

LEMMA 3. For each i L, .,. /II letl, Co[O.x..) hace a compact sUjiport.
and let the separable fimction

be defined for all t in the Ilonllegative cone

IR I" {t 1R''': t I ofor i L ... , m:.

Let the parity constant TT, I he chosell suh/ect 10 the constraint that
TT, .~ I (I"I,(O) o. i L .... 111, and let E 0.6 0 be given. Then there
exist polynol11ials PI ..... Pili such that

p.;( -. ttl TTi . Pi(l,),

1, ... ,111 and such that the separable exponential SU/II

y(t)
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uniformly approximates f on ~+m so well that
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Ijet) - y(t) I < € for all t E ~+m. (4)

Proof Let I I"', denote the sup norm on Co[O, 00), let

B = max{lh 100 , ..• , 1 fm loo},

and for each i = 1,... , m let a polynomial Pi satisfying the parity constraint (2)
be selected in such a manner that the function

has norm

1 €i 100 < f3

where f3 > 0 is chosen so small that

(5)

(6)

(7)

Such polynomials exist by virtue of Lemma 1. Let y be defined by (3).
Using Eqs. (3) and (5)-(7) we find

I f(t) - y(t)l = ITI /;(ti) - TI [/;(t;) - €i(ti)J!
i=l i=l

rn m

~ TI [I fi(t i ) I + 1E;(ti)IJ ~ TI 1/;(ti)1
i=l i=l

<€

whenever t E ~+m so (4) holds. I

THEOREM 1. Let!» be a nonvoid open subset of ~m, let 1 ~ p ~ 00, and
assume that the point A E em lies in the interior of the spectral set Up (!»).
Then Voo({A}) is dense in L p (!») if 1 ~ p < 00 and in Co(!») ifp = 00.

Proof Let f be arbitrarily chosen from L p (!») if 1 ~ p < 00 and from
Co(!») if p = 00. We must show that we may II !Ip-approximate f as closely
as we please with the elements of Voo({A}). Since the space Y of continuous
functions having compact support is dense in L p (!»), 1 ~ p < 00, and in
Co(!») we may assume (with no loss of generality) that fE Y. Moreover,
since the subalgebra, d, of finite linear combinations of separable functions
is II lip-dense in Y (as can be seen with the aid of the Stone-Weierstrass
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theorem [1, p. 191]) we may further assume thatfE d or equivalently, thatf
has the representation

where

J(t)

rp(t)

rp(t) exp(:A. . t), t E [Rm

t E [R/JI.

(8)

(9)

and where fIJI •... ' rpm are continuous functions with compact support.
Finally, since each rp, may be replaced by the sum of its even and odd parts.
we may still further assume that each rp/ has definite parity TTi I. i.e ..

I. .... 177. ( 10)

By hypothesis :A. lies in the interior of U)I(::i') and thus there exists some
o> 0 such that each of the exponential sums

exp[A . t ocr j ' t], 1, ...,211I

lies in Lp(::i') where crj, j I •... , 2/11
, IS an enumeration of the 2m vectors

(=1::L .., :±=I) from [Rnl. We define

set) 'I 1m t c [R'"

noting that the function

ljJ(t) exp[A . t os(O]

also lies in Lp(g) since

ljJ I )'j !' 1) oc

and that ljJ lip 0 since 9; is nonvoid.
Now let E > 0 be selected. In view of Lemma 3 there exists some separable

polynomial

such that P, and rp, have the same parity TT" i 1, ... , m, and such that

where

sup{i £(t) 1 : " 0 for i 1, ... ,m}

£(t) ~= [rp(t) - pet)] exp[ -os(t)],

Since p, and rpi have the same parity it follows that

t E [Rill.
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This being the case the exponential sum

yet) = pet) exp(i.. . t)

from V,,({i..}) satisfies

Ilf - y lip = II E!f; lip :(; II Ell", . 11!f; lip < EO

and since € > °is arbitrary, the proof is complete. I

4. EXISTENCE OF BEST ApPROXIMATIONS
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The following result is an extension of the existence theorem presented in
[2] for the case where fifi is bounded.

THEOREM 2. Let fifi be a nonvoid open subset of IRm, let S ~ em be closed,
let 1 :(; P :(; 00, and let n = I, 2, .... Then every f E Lififi) has a best II IIp­
approximation from Vn(S).

Proof Let fifi1 ~ fifi2 ~ ... be an expanding sequence of nonvoid bounded
open sets in IRm with union fifi, and for each fL == I, 2, ... let the seminorm
II lip,,, be defined on Lp(fifi) by

where

(11)

x...{t) = I

=0

if fEfifi",

otherwise.
(12)

Let fE Lp(fifi) be selected, and let the minimizing sequence Yl, Y2 '00' be
chosen from Vn(S) in such a manner that

lim Ilf - Yv lip = inf{llf - Y lip: y E Vn(S)}.

This sequence is II lip-bounded and thus II IIp,,,-bounded for each fixed fL =

1,2, .... This being the case, we see by using the lemma in [2] that after
passing to a subsequence, if necessary, we may effect a decomposition

where vv, Xv E Vn(S), v = I, 2, ... (13)

and find some v E Vn(S) = Vn(S) such that

lim II VV - v lip,,, = 0,

lim inf II g + Xv lip,,, ~ II g lip,,,

fL = 1, 2, ...

for every g E LP{fifi), fL = I, 2, ....

(14)

(15)
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This being the case

- 1"
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lim inf I -- r X F jJ./..l

lim inf I .1'1 1I,Il

lim inf I .\',.

infUI )'
i' )' Vn(S):

for each fL I, 2, .... and since :/ u~" we have

I-v i' inf{

Since v E Vn(S) equality must hold, I.e" r is a best
from Vr/S). I

i,-approximation to (

Note. In the preceding theorem the blanket hypothesis that .'./ is a
nonvoid open set can be weakened to the hypothesis that Y is a measurable
set with a nonvoid interior and with a boundary having zero measure. When
g is bounded. the closure of S is a necessary and sufficient condition for
every fE Lj,(g) to have a best I'-approximation from V,lSl. but when tj is
unbounded this closure hypothesis is not the best possible. For example.
when m I or II I. a necessary and sutl1cient condition for existence is
that S be closed in Ui)(tj). cpo [3. Theorem 3]. Unfortunately. when II 2
and 111 2 this is no longer the case. and 110 such optimum closure hypothesis
for S is known in this situation.

THEOREM 3. Let.Ct' be a ilOlll'oid open subsel of !R'''. leI I p J .. alld
let IE LJ':/). Let n L 2.... and let S be a closed subset of (:,''. LetCl]
tj 2 ... be an expanding sequence oj"n0l7l'0id hounded open subsels of !R'll wirh

union Y. ami for each l' L 2.... ler r,. he a hesr Jl.,.-approximarioll ro I
from V,,(S) where rhe seminorm!: 1'.' is defined hy (II) and (12). LeI SOllie
subsequence of {y..} and some r E //,,(S) be selcered so rhat ( 13)-( 15) hold. Theil
1" is a best i ii-approximation to ffrom VI/(S),

ProoF Let y be a best i,-approximation to I from ~1i(S), Then for
each fixed fL L 2.... we have

so that

1.1' -- r /)./1 lim inf I
lim inf I
liminfif
lim inf f--

f r ;,'

.1'1' f.I,!'

J' I!,l'

f l' )' I r I"

i.e .. v is a best approximation. I
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